

Cambridge IGCSE[™]

MATHEMATICS

Paper 3 Calculator (Core) MARK SCHEME B Maximum Mark: 80 0580/03 For examination from 2025

Specimen

This document has 8 pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1: Marks must be awarded in line with: the specific content of the mark scheme or the generic level descriptions for the question • the specific skills defined in the mark scheme or in the generic level descriptions for the question the standard of response required by a candidate as exemplified by the standardisation scripts. • **GENERIC MARKING PRINCIPLE 2:** Marks awarded are always whole marks (not half marks, or other fractions). **GENERIC MARKING PRINCIPLE 3:** Marks must be awarded **positively**: marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the • syllabus and mark scheme, referring to your Team Leader as appropriate marks are awarded when candidates clearly demonstrate what they know and can do . marks are not deducted for errors . marks are not deducted for omissions . answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous. **GENERIC MARKING PRINCIPLE 4:** Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptions. **GENERIC MARKING PRINCIPLE 5:** Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptions in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to help with understanding of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Types of mark

- M Method mark, awarded for a valid method applied to the problem.
- A Accuracy mark, given for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- **B** Mark for a correct result or statement independent of Method marks.

Abbreviations

- awrtanswers which round tocaocorrect answer only
- dep dependent on the previous mark(s)
- FT follow through after error
- isw ignore subsequent working (after correct answer obtained)
- nfww not from wrong working
- oe or equivalent
- SC special case
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)	20 000 000	1	
1(b)	471 000	1	
2	>	2	B1 for 2 correct symbols
	= >		
3(a)	310	1	
3(b)	Reflex	1	
4(a)	108	1	
4(b)	66	1	
4(c)	351	1	FT 459 – <i>their</i> 108
5(a)	6 7	2	B1 for 3 or 4 correct
	8 9 10		
5(b)(i)	$\frac{4}{24}$ oe isw	1	
5(b)(ii)	$\frac{14}{24}$ oe isw	1	
6(a)	43.5 or $43\frac{1}{2}$	2	M1 for $7 \times 5 + 8\frac{1}{2}$ oe
6(b)	268.25	2	M1 for 5 × 27 and 4 × 20.6[0] and 3 × 16.95 implied by 135 and 82.4[0] and 50.85
6(c)	1008	2	M1 for $\frac{432}{9}$ oe
6(d)	48	3	B1 for 126
	84 126		M1 for 48 or 84 or $\frac{108}{162} \times k$ where $k = 72$ or <i>their</i> 126 oe
7(a)	Pattern 5 correctly drawn	1	
7(b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	B1 for 2 or 3 correct

Question	Answer	Marks	Partial Marks
7(c)	Add 2 oe	1	
7(d)	2 <i>n</i>	1	
7(e)	150 is not a square number oe	1	
	or Pattern 12 uses 144 white counters and Pattern 13 uses 169 so 150 is not in the sequence oe		
8	6	2	M1 for $\frac{12800 \times 3.2}{100}$ oe or better
9	x - 9y final answer	2	B1 for $x + ky$ or $kx - 9y$ as final answer or for $x - 9y$ seen not as final answer
10(a)	$3q^2 - 21q$ final answer	1	
10(b)	2p(7-3q) final answer	2	B1 for $2(7p - 3pq)$ or $p(14 - 6q)$
11(a)(i)	08 15	1	
11(a)(ii)	23	1	
11(b)(i)	0.35	2	M1 for 1 – (0.1 + 0.55)
11(b)(ii)	20	1	
12	$\frac{1}{4}$ cao	3	B2 for $\frac{15}{60}$ oe
			OR
			B1 for [adults =] 36 or for $\frac{9}{60}$ oe
			M1 for $60 - 9 - their \frac{3 \times 60}{5}$ or for $1 - \frac{3}{5} - their \frac{9}{60}$
13	20-3n final answer	2	B1 for 3 <i>n</i>
14(a)	42	1	
14(b)	[angle TRS =] $180 - (42 + their \text{ angle RTS})$	M1	
	Leading to 84	A1	No errors

Question	Answer	Marks	Partial Marks
14(c)	$RTQ = 48 \text{ or } RQT = 48 \text{ and } reason isosceles triangle}$	B1	
	angle $QTS = 42 + 48$	B1	
	angle between a tangent and radius (or diameter) is 90	B1	
15(a)	60	2	M1 for $\frac{360}{6}$ or $180 - \frac{180(6-2)}{6}$ oe
15(b)	9	2	B1 for 40
			or M1 for $\frac{360}{100 - their (a)}$ oe
16	-3, -2, -1, 0, 1	2	B1 for 4 correct and no extras
17	13	2	M1 for $4b - 28 = 24$ or $b - 7 = \frac{24}{4}$ oe
18	26.25	3	M2 for $\frac{1}{3}(4.5 \times 2.5) \times 7$ oe
			or M1 for 4.5×2.5 oe
19(a)	576 cao	1	
19(b)	60.40	4	B3 for $$636.4[0]$ or M3 for $0.32 \times 1.075 \times 1850 - their (a)$ oe or B2 for $$0.344$ or M2 for $0.32 \times 1.075 \times 1850$ oe or M1 for 0.32×1.075 oe
20(a)	2x + 3 final answer	2	B1 for answer $2x + k$, $k \neq 0$ or M1 for substituting (1, 5) into $y = 2x + c$
20(b)	$-\frac{3}{4}$ oe	2	M1 for $\frac{7-1}{1-9}$ oe
21	28.7 or 28.66	3	$360^{2} \times 10^{1} \times $
			or M1 for $\frac{120}{360} \times 2 \times \pi \times 7$ oe

For examination from 2025

Question	Answer	Marks	Partial Marks
22	16.2 or 16.24 to 16.25	3	M2 for $25^2 - 19^2$ oe
			or M1 for $25^2 = w^2 + 19^2$ oe
23	5.52 or 5.521 to 5.522		M2 for $[x =] \frac{7.6}{\tan 54}$ or $[x =] 7.6 \tan 36$
			or M1 for $\tan[54] = \frac{7.6}{x}$ or $\tan 36 = \frac{x}{7.6}$