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1 Using any standard results given in the List of Formulae (MF20), show that
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 for all positive integers n. [4]

2 A curve has polar equation r = sin θ + cos θ. Find the area enclosed by the curve and the lines θ = 0 and 
θ = 2

1 π . [4]

3 (a) Evaluate, in terms of k, the determinant of the matrix 
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 Three planes have equations  x + 2y + z = 4,  –3x + 5y + 8z = 21  and  6x + 12y + kz = 31.

 (b) State the value of k for which these three planes do not meet at a single point. [1]

 (c) Find the coordinates of the point of intersection of the three planes when k = 7. [3]

4 (a) Given that sinhy x=  for x ⩾ 0, express x
y
d
d

 in terms of y only.  [3]

 (b) Hence or otherwise find 
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t t
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5 Use induction to prove that r r n4 1
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6 The curve C has equation y = 
x
x
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 (a) By considering a suitable quadratic equation in x, find the set of possible values of y for points 
on C. [5]

 (b) Deduce the coordinates of the turning points on C.  [4]

 (c) Sketch C. [4]
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7 The function f satisfies the differential equation

x2 f ″ (x) + (2x − 1)f ′ (x) − 2f(x) = 3ex−1 + 1,      (∗)

 and the conditions f(1) = 2, f ′(1) = 3.

 (a) Determine f ″(1).  [2]

 (b) Differentiate (∗) with respect to x and hence evaluate f ‴ (1).  [4]

 (c) Hence determine the Taylor series approximation for f(x) about x = 1, up to and including the term 
in (x −1)3.  [3]

 (d) Deduce, to 3 decimal places, an approximation for f(1.1).  [2]

8 Consider the set S of all matrices of the form 
p
p
p
p

J

L

K
K

N
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O
O, where p is a non-zero rational number. 

 (a) Show that S, under the operation of matrix multiplication, forms a group, G. (You may assume that 
matrix multiplication is associative.) [5]

 (b) Find a subgroup of G of order 2 and show that G contains no subgroups of order 3. [4]

9 (a) Show that the substitution u
y
1
3=  transforms the differential equation x

y
d
d

 + y = 3xy4 into

     x
u u x3 9d
d - =- . [3]

 (b) Solve the differential equation x
y
d
d

 + y = 3xy4, given that y = 2
1  when x = 0. Give your answer in the 

  form y3 = f(x).  [9]
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 (a) Given that L lies in П, determine the value of k.  [2]

 (b) Find the coordinates of the point, Q, in П which is closest to P(10, 2, −43). Deduce the shortest 
distance from P to П.  [5]

 (c) Find, in the form ax + by + cz = d, where a, b, c and d are integers, an equation for the plane which 
contains both L and P.  [6]

11 (a) Use de Moivre’s theorem to prove that  sin 5θ ≡ s(16s4 – 20s2 + 5), where s = sin θ, and deduce that 

  sin 5
2

8
5 5=r
+

. [8]

 The complex number  ω = 16(– 1 + i 3 ).

 (b) State the value of |ω| and find arg ω as a rational multiple of π. [3]

 (c) (i) Determine the five roots of the equation z5 = ω, giving your answers in the form  (r, θ), where  
r > 0 and  – π < θ  ⩽ π . [5]

  (ii) These five roots are represented in the complex plane by the points A, B, C, D and E. Show 
these points on an Argand diagram, and find the area of the pentagon ABCDE in an exact surd 
form. [3]

12 (a) Let In = x x16n 2
0

3
+y  dx, for n ⩾ 0. Show that, for n ⩾ 2,

     (n + 2)In = 125 × 3n – 1 – 16(n – 1)In – 2. [6]

 (b) A curve has polar equation r 4
1= θ 4 for 0 ⩽ θ ⩽ 3.

  (i) Sketch this curve.  [2]

  (ii) Find the exact length of the curve.  [7]


